Epidemiology of Mucopolysaccharidosis Type II According to the Register of the Russian Federation

Natalia V. Buchinskaia^{1,2}, Ekaterina Yu. Zakharova³, Yulia S. Koshevaya², Anastasia O. Vechkasova³, Rostislav K. Skitchenko⁴, Aleksandr M. Nikonov⁵, Vera I. Kurilova⁶, Yulia V. Maximova⁷, Khasyanya F. Aksyanova⁸, Elena G. Bakulina⁹, Nina I. Kononenko¹⁰, Elena V. Osipova¹¹, Mikhail M. Kostik^{1,4}, Sergei I. Kutsev³

What is already known on this topic?

MPSII is the most frequent type of the mucopolysacharidosis, the epidemiology of this disease is provided by the several countries.

What does this study add on this topic?

This is the first report about geographical and molecular epidemiology of MPS II in Russian Federation according the data of national MPS registry.

Corresponding author:

Mikhail M. Kostik

kost-mikhail@yandex.ru,
mikhail.kostik@gmail.com
Received: July 8, 2024
Revision Requested: July 28, 2024
Last Revision Received: October 27, 2024

Accepted: October 31, 2024 Publication Date: January 2, 2025

Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ABSTRACT

Objective: The study aimed to evaluate the epidemiological, clinical, and molecular data of mucopolysaccharidosis type II (MPS II) patients and their outcomes using the national registry of patients in the Russian Federation (RF).

Materials and Methods: In the retrospective cohort study, the authors included data from the Russian national registry of MPS II.

Results: The prevalence of MPS II in RF is 0.62 per 100 000 live births or 0.09 per 100 000 population with the majority of patients in the Central (n = 36) and the Volga Federal District (n = 35). Males were 157 (99.4%), positive MPS II family history had 47 (29.7%) patients. The median age of the first symptoms was 1.8 (0.8–2.6) years, ranging from 0.1 to 19 years, and the age of diagnosis was 4.0 (2.5; 5.9) years, ranging from 0.1 to 38.9 years. A genetic study was available for the analysis in 116 (73.4%) patients. Single nucleotide variants in the IDS gene were found in 98/116 (84.5%) patients, and 18 further patients (15.5%) had gross rearrangements. About 59/98 (60.2%) patients had missense, 15/98 (15.3%) had frame-shift variants, 12/98 (12.2%) had splice site, and 11/98 (11.2%) had nonsense variants. One (1.0%) patient out of 98 patients had a small deletion. Pathogenic, likely pathogenic variants, and variants with uncertain significance were found in 54 (55.1%), 36 (36.7%), and 8 (8.2%) patients, respectively. About 138 (87.3%) patients received enzyme replacement therapy.

Conclusion: The prevalence of MPS II in the RF is higher than that in some European countries and closer to the Asian population. The registry is a convenient tool for disease epidemiology and monitoring.

Keywords: Mucopolysaccharidosis type II, epidemiology, *IDS* gene, genotype-phenotype, Russian Federation

INTRODUCTION

Mucopolysaccharidosis type II (MPS II) or Hunter syndrome (OMIM 309900) is a rare lysosomal storage disease with an X-linked inheritance pattern, characterized by a progressive

Cite this article as: Buchinskaia NV, Zakharova EY, Koshevaya YS, et al. Epidemiology of mucopolysaccharidosis type II according to the national register of the Russian Federation. *Turk Arch Pediatr.* 2025;60(1):41–47.

Saint-Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia

²Saint-Petersburg State Medical Diagnostic Center (Genetic Medical Center), Saint-Petersburg, Russian

³Federal State Budgetary Scientific Institution, Research Center for Medical Genetics, Moscow, Russia

⁴Almazov National Medical Research Centre, Saint-Petersburg, Russia

⁵KGBUZ Consulting and Diagnostic Center of the Altai Territory, Barnaul, Russia

⁶State Budgetary Institution of Health of the Perm Region, Regional Children's Clinical Hospital Perm, Russia

⁷Novosibirsk State Medical University, Novosibirsk, Russia

⁸Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia

⁹Stavropol Regional Clinical Consulting and Diagnostic Center, Stavropol, Russia

¹⁰Kursk Regional Clinical Hospital, Kursk, Russia

[&]quot;Budgetary Healthcare Institution of the Udmurt Republic, The First Republican Clinical Hospital of the Ministry of Health of the Udmurt Republic, Izhevsk, Russia

course and damage to multiple organs and tissues. The disease is caused by pathogenic variants in the *IDS* (iduronate sulfatase) gene, encoding an enzyme that breaks down the glycosaminoglycans dermatan sulfate and heparan sulfate.¹²

The European registry for MPS II, the Hunter Outcome Survey (HOS), started in 2005 when the first patient was enrolled. By 2006, it included 100 patients from 10 countries and, by 2021, 1322 patients from more than 16 countries.³ The number of research papers from HOS today is approaching 20. The latest analytical snapshot of HOS data was carried out in July 2020. At that time, in 3 countries, 152 centers, and 1338 patients participated in the registry, and 86% of the patients received enzyme replacement therapy (ERT).⁴

The register of patients with MPS II in RF started in 2008, when the ERT was available in the RF, and was updated and expanded in 2022. The register includes patients diagnosed with MPS II, confirmed by biochemical and molecular genetic methods. Information about patients is entered by geneticists or attending physicians who closely monitor patients at their place of residence. In each region of the RF, a responsible physician maintains the information about the patients. All patients with MPS II are subject to inclusion in the register, regardless of age and therapy.

The study aimed to evaluate the epidemiological, clinical, and molecular data of MPS II patients and their outcomes using the national registry of patients in the RF.

MATERIALS AND METHODS

Register's Characteristics

In this study, the authors used data from the "Register of Patients with MPS II in the Russian Federation" provided by the Association of Medical Geneticists and the Federal State Budgetary Scientific Institution, Research Center for Medical Genetics named after Academician "N.P. Bochkov."

Participation in the registry was voluntary; the patient or his legal representative signed an informed consent to participate in the registry. The patient or his legal representative has given informed consent to participate in the registry.

Study Design

In the retrospective cohort study, the data about 158 patients with MPS II (November 2023) were extracted from the Russian national registry (2008–2023). The diagnosis was made on clinical phenotype with enzymatic and/or molecular confirmation. The study was approved by the Ethics Committee of Saint-Petersburg State Pediatric Medical University (protocol #1 from 19.01.2009). Written informed consent was obtained from the patients who agreed to take part in the study.

Assessments

From every patient, the authors extracted the following information:

 Demography: Demography includes age, sex, residence, family history of MPS II, the age of the first symptom(s), the age of the diagnosis, and time before the diagnosis. The age of the first symptom was determined retrospectively by the experienced physician, who included the patient in the registry according to personal opinion if this symptom could be related to MPS II or not.

- Clinical features, related to the disease. The neuronopathic
 form was determined if a patient has central nervous system involvement with at least one of the following symptoms:
 hydrocephalus, progressive intellectual disability, losing
 skills, and epilepsy. The main clinical symptoms were related
 to the time of diagnosis of MPS II.
- Laboratory data: Laboratory data include data of genetic analysis (sequencing by Sanger) and enzyme activity. The authors highlighted the significant changes at the IDS gene as deletions, recombinant events involving IDS-IDS2, and missense mutations leading to a severe phenotype of MPS II, according to the previously published data.⁵
- *Treatment:* Treatment category includes the number of patients being treated with ERT.
- Outcomes: Outcome catergory includes data on alive or dead.

STATISTICS

Statistical analysis was performed with the software STATISTICA, version 10.0 (StatSoft Inc., Tulsa, Okla, USA). All continuous variables were checked for normality by the Kolmogorov-Smirnov test. All continuous variables are presented with median (Me), quartiles (Q1; Q3), range (minimum-maximum, min-max), and frequency and percentage for categorical variables. The chisquare test (if less than 20% of the cells have an expected count of less than 5) or Fisher's exact test (if more than 20% of the cells have an expected count of less than 5) was used to compare categorical variables. Two quantitative variables were compared using the Mann–Whitney U-test. For the calculation of the disease prevalence, the authors used the official statistical data from the Federal State Statistics Service: https://rosstat .gov.ru/.6 The number of residents of the Russian Federation (RF) was taken from the Rosstat website based on the results of the 2020 population census.6

RESULTS

Demographic Characteristics of Patients with Mucopolysaccharidosis Type II

Now, in the registry, there are data about 158 patients with MPS II and 140 (88.6%) of them are currently alive. The patient cohort consisted of 157 males (99.4%) and 1 female (0.6%).

The disease was caused by a mutation in the *IDS* gene inherited from the mother and the presence of chromosome X of paternal origin, partially deleted in the long arm region—46, X, del(X)(q22.1).

The median age of the first symptoms was 1.8 (0.8–2.6) years, ranging from first months to 19 years.

The median time since the first symptom before genetic confirmation was 1.8 (0.6; 3.5) years ranging from 0.3 to 30.9 years. Among the clinical features, patients had cardiac involvement (n = 81; 51.6%), organomegaly (n = 100; 63.3%), and skeletal involvement (n = 130; 82.2%). According to the registry, the main manifestations of the disease included hepatomegaly (n = 100;

63.3%), ENT (ear, nose, and throat) involvement (n = 98; 62.4%), umbilical and inguinal hernias (n = 86; 54.8%), damage to the cardiovascular system (n = 81; 51.6%), with changes in the heart valves detected in 71 patients (45.2% of those examined), and multiple dysostosis (n = 62; 39.5%).

In the registry, there is a patient with a mild form of MPS, who experienced the first symptoms of the disease at the age of 19 and was diagnosed at 21 and has completed secondary education. The activity of the idursulfatase enzyme was low, and no molecular genetic analysis had been performed at the time. At the time of diagnosis, the patient's height was 136 cm and weight was 48 kg. The patient has a disproportionate physique, including macrocephaly, a short neck, prominent facial features, a chest deformity, hepatosplenomegaly, an umbilical hernia, joint stiffness, carpal tunnel syndrome, and mixed hearing loss. Echocardiography revealed regurgitation of the mitral, aortic, and tricuspid valves, as well as pulmonary artery stenosis and compensated heart failure. Since 2015, the patient has been receiving ERT with idursulfase (Elaprase®, Shire [a Takeda company], Lexington, Mass, USA) for 8 years.

The neuronopathic form to the last available visit was detected in 87/125 (69.6%), the non-neuronopathic form had 38/125 patients (30.4%) and there are no data in 33 (20.9%) patients. Severe intellectual disability had 28 (22.4%) and mild-to-moderate intellectual disability had 59 (47.2%) patients. Hydrocephalus was diagnosed in 60/123 (48.8%) patients, and epilepsy in 20/127 (15.8%). The median age of the diagnosis in neuronopathic form was 49.0 (35.0; 88.0) months, compared to non-neuronopathic 36.0 (26.0; 60.0) months (P = .059), and the time from the first symptoms to diagnosis was longer 29.0 (6.6; 58.3) months than in non-neuropathic 14.7 (6.8; 26.2) months (P = .022).

At the time of data collection, out of 158 patients, 139 (87.3%) had ever received ERT. By then, 140 people were still alive, of which 125 had received enzyme replacement treatment (89.3% of the surviving population), and 18 had died for various reasons. Out of these, 14 (77.8%) of the deceased had also received ERT (P = .158).

The main causes of death (n = 18; 11.4%) were progression of the underlying disease (n = 2), pneumonia (n = 3), acute heart failure (n = 5), accompanied by respiratory failure (n = 3), and multiple organ failure (n = 2). In 3 cases, the cause of death has not been noted. The median age of death in MPS II with and without cognitive deficiency was 15 years and 17 years, respectively. There are no differences in the mortality rates between neuronopathic form 8/87 (9.2%) and non-neuronopathic form 6/38 (15.8%), P = .282. The longest clinical follow-up is 16 years and the longest follow-up in the registry is 7 years. Detailed demographic characteristics of patients with MPS II according to the registry analysis as of November 2023 are presented in Table 1.

Family History of Patients with Mucopolysaccharidosis Type II

Forty-seven patients reported a positive family history of MPS II within their family. Most frequently, these were siblings (n = 18), accounting for 11.4% of all patients in the registry. Seven patients with MPS II had cousins with the same condition, accounting for 4.4% of all MPS II patients listed in the registry. Other familial cases were less common: 3 patients had a grandfather with MPS II (1.9%), 13 patients had an uncle with the same disease (8.2%), and 6 patients had other relatives with the diagnosis (3.8%). In some families, more than 2 relatives had MPS II, such as siblings and an uncle from the mother's side within the same family.

Regional Distribution of the Patients

On the territory of Russia, patients with MPS II are distributed unevenly: the majority of the patients live in the Central Federal District—36 (25.7%)—and in the Volga Federal District—35 (25.0%). The smallest number of patients was registered in the Far Eastern Federal District—6 (4.3%)—and in the North Caucasus Federal District—7 (5.0%) patients. The prevalence of MPS II in the RF is 0.09 per 100 000 population. The prevalence of MPS II is equal to Russia's average data in the Central and North-West Federal Districts, less in Far-Eastern, Southern, North-Caucasian and Ural Federal Districts, and the highest prevalence is observed in the Siberian and Volga Federal Districts. Data are in Table 2.

Parameter	n	Results (n = 158), n (%) or Me (Q1; Q3)/min-max
Sex, male, n (%)	158	157 (99.4)
Sex, female*	1	1 (0.6)
Current age of the patient, years	140	13.5 (9.6; 18.9)/2.3-46.9
The age of the first symptom, years	115	1.8 (0.8; 2.6)/0-19
Age of genetic confirmation, years	109	4.3 (2.8; 7.7)/0.1-39.7
Age at diagnosis, years	133	4.0 (2.5; 5.9)/0.1-38.9
Time since first symptoms to genetic confirmation, years	109	1.8 (0.6; 3.5)/0.0-30.9
Ever received ERT, n (%)	138	138 (87.9)
Did not receive ERT, n (%)	20	20 (12.7)
Time since first symptoms of ERT, years	112	3.8 (2.0; 8.4)/0.25-40.4
Time since diagnosis to ERT, years,	104	0.8 (0.3; 4.1)/0.0-34.9
Patients with neuronopathic form, n (%)	125	87 (69.6)
Alive/died, n (%)	158	140 (88.6)/18 (11.4)
Age of death, years	18	18.7 (13.7; 21.7)/10.4-43.8

ERT, enzyme replacement therapy; max, maximal; Me, median; min, minimal; Q1-Q3, quartiles.

Federal District	Number of Alive Patients with MPS II, n (%)	Number of Residents in the Federal District	Prevalence of MPS II in the Federal District per 100 000 Live Births
Central	36 (25.7)	40 334 532	0.09
Southern	10 (7.1)	16 746 442	0.06
Northwestern	12 (8.6)	13 917 197	0.09
Privolzhsky	35 (25.0)	28 943 264	0.12
Far-Eastern	6 (4.3)	7 975 762	0.075
North-Caucasian	7 (5.0)	10 171 434	0.07
Ural	8 (5.7)	12 300 793	0.065
Siberian	25 (17.9)	16 792 699	0.15

Molecular Genetic Assessment

Molecular genetic tests were performed in 123 patients (77.8%), but genetic data of 116/158 (73.4%) patients only were available for the analysis, in 7 (4.4%) patients data were not correct and could not be properly assessed, and information about genetic tests in 10 (6.3%) patients are missed and in the remaining 25 (15.8%) patients the diagnosis was established based on clinical data with biochemical confirmation. Single nucleotide variants in the *IDS* gene were found in 98/116 (84.5%) patients and gross rearrangements of the *IDS* gene were identified in 18/116 (15.5%) patients (Fig. 1 and Supplementary Table 1).

The following types of single nucleotide variants (n = 98) were identified: pathogenic (n = 54; 55.1%), likely pathogenic (37 variants) in 36 patients (36/98, 36.7%), variants with uncertain significance (n = 8; 8.2%). One of the patients (#20 in Supplementary Table 1) has 2 missense variants c.1411G>C

(p.Asp471His) and c.1418C>T (p.Pro473Leu), both of which were likely pathogenic. He has the non-neuropathic form of MPS II. In the cohort 59/98 (60.2%) patients had 60 missense variants. The second major type was frame-shift mutations (15/98; 15.3%), followed by the nonsense mutations (11/98; 11.2%), splice sites mutations (12/98; 12.2%), and the least common were small deletion (1/98; 1%).

The most common mutations identified in the *IDS* gene during the analysis of the MPS registry in the RF were as follows: c.1122C>T (found in 5 unrelated patients from different regions of Russia), c.1402C>T, c.253G>A and c.257C>T. Each of these variants was detected in 4 unrelated patients from different parts of RF.

Missense mutations (54.2%, 32/59) and gross rearrangements (66.7%, 12/18) of *IDS/IDSP1* were the most common variants among patients with the neuropathic form who underwent genetic testing.

Figure 1. IDS gene variants localization and types. The figure shows the location of variants in the IDS gene and their types. The majority of variants are located in the iduronate 2-sulfatase domain and are missense variants; variants that result in a shorter version of the protein are the second most common.

The neuropathic form was found in 12 out of 13 patients in whom neurologic status was known (92.3%) of patients with gross rearrangements, in 32/55 (58.2%) with missense mutations, in 11/14 (78.6%) with frameshift mutations, in 6/11 (54.5%) with nonsense mutations, and in 5/12 (41.7%) with splicing mutations.

The large rearrangements of the *IDS* gene differed in structure. In 5 patients, recombination was detected between intron 7 and the distal part of exon 3 of the pseudogene *IDSP1*—this is the most common rearrangement in the sample. Two patients had an *IDS/IDSP1* inversion. Two patients had an extended deletion that affected exons 1–7 of the gene, one patient had the deletion of exons 3–7 of *IDS*, and one patient had the deletion of exons 4–7 of *IDS*. Two patients had a deletion of the entire *IDS* gene. Also, deletions of individual exons of the *IDS* gene were noted: 5 exons and 7 exons per patient. Detailed information about the genetic variants is in Supplementary Table S1.

In 8 patients (5%) with single nucleotide variants, enzyme activity was found to be 0. Four of these patients had pathogenic variants in the *IDS* gene, while 3 of them had likely pathogenic variants. One patient did not have any data on molecular genetic analysis available in the database. One patient with a large rearrangement (*IDS/IDSP1* inversion) had zero enzyme iduronate sulfatase activity.

DISCUSSION

The data about the clinical and molecular epidemiology of MPS II patients according to the national MPS registry have been provided.

Analysis of Disease Demography

Despite the rising awareness about MPS, the disease is still diagnosed with some delay. The median age of first symptoms and age of diagnosis were 1.8 (0.8; 2.6) and 4.0 (2.5; 5.9) years, respectively. The main symptoms of the disease include the combination of ENT involvement, which is the most common symptom being adenoid hypertrophy, the presence of hernia in the patient, either now or in the past, along with signs of skeletal dysplasia, such as multiple dysostosis with varying severity, and changes in heart valves as detected by echocardiography. These data correspond to the data of HOS, as well as the proportion of patients receiving ERT 87.9% in the Russian registry and 86% at HOS. Neuronopathic form had 87/128 (68.0%) patients, whose information was available and was very close to HOS 2021 data-66.6%. The neuronopathic form in patients with pathogenic missense mutations and extensive rearrangements was detected in 29/37 (78.4%) patients. Many disease-associated variants have been previously described.^{7,8}

Analysis of Sex Distribution

Despite the X-linked recessive type of inheritance, there is 1 female patient in the registry. This case and similar cases have previously been described in the literature in the case of non-random inactivation of the X chromosome.^{9,10}

Analysis of Deaths

According to the international HOS registry, patients with cognitive impairment have a shortened life expectancy of 11.7

years compared to patients without cognitive impairment, which is 14.1 years (P = .024)." In the registry, the median age of patients with cognitive impairment was 15.3 years, and 17 years in patients without cognitive impairment. The main reasons for deaths were respiratory (46%) and cardiac (16%) involvement and the reasons for the death were unknown in 23% of the patients." In the registry, the majority of the deaths were related to heart failure (28%) and respiratory failure (33%), related to MPS progression. In several cases, patients with severe underlying MPS II course had an infection (usually pneumonia) that led to cardiopulmonary decompensation.

The Prevalence of Mucopolysaccharidosis Type II in the World

The data about MPS II epidemiology differs between countries and continents. In Japan, 176 patients were retrospectively identified over 18 years (1982–1999) and new 79 patients in 2003–2009 years. In Japan, the prevalence of all types of MPS during the study period was 1.53 per 100 000 live births, MPS II was 0.84 per 100 000 live births.⁵ This type of MPS is the most prevalent in Japan, as in Russia.

In Russia, in 2008–2023 (15 years), 158 patients with MPS II were identified and included in the national register, containing 385 patients with different types of MPS, which amounted to 41%. The prevalence of MPS II in the RF during the study period was 0.62 per 100 000 live births (calculation of the total number of patients with MPS II per number of live births for the period 2008–2022) or 1:161 000 live births.

The Swiss National Registry of Patients with Lysosomal Storage Diseases working since 2009 contains information about 51 patients (from 1975 to 2008) with all types of MPS and 12 (23.5%) of them are MPS II patients.⁵

South Korean registry includes 147 patients (from 1994 to 2013) with all types of MPS, and MPS II is the most common type—54.6%. The overall incidence of MPS was 1.35 per 100 000 live births, while the incidence of MPS II was 0.74 per 100 000 live births.¹²

Over 6 years of diagnostics in China (2006–2012), 188 MPS patients were identified and 47.4% of them had MPS II.¹³

The distribution of patients with MPS is uneven across the country, which is primarily due to economic factors and early access to treatment in larger centers. 5,12,13-18 This uneven distribution can also be seen in other countries, such as Turkey. 19

The register data does not accurately reflect the prevalence of MPS II in the RF. There are several factors that can affect the accuracy of the reported data. Firstly, there may be mild cases of the condition that are not diagnosed for a prolonged period or not diagnosed at all. Secondly, not completely recorded in the registry due to reluctance on the part of legal representatives or patients to participate in the registry (as mentioned in the Materials and Methods section).

According to neonatal screening data in Illinois, only 3 out of 339 269 newborns were diagnosed with MPS II, resulting in an incidence rate of 0.29 per 100 000 births, which is similar to the national average. The results of neonatal screening for MPS I in the United States show a range of 0.45–2.81 cases per 100 000 live births, with significant variation in incidence among

Table 3. The Prevalence of Mucopolysaccharidosis Type II in the Russian Federation in Comparison with the Data of Other Countries of the World

Country	Selective Screening Period (years)	Number of Identified MPS Patients (Persons)	Incidence of MPS Per 100 000 Live Births	Number of Identified MPS II Patients (Persons)	Incidence of MPS II Per 100 000 Live Births
Japan⁵	18	331	1.53	176	0.84
$Switzerland^{\scriptscriptstyle 5}$	34	51	1.56	12	0.46
South Korea ¹²	19	147	1.35	80	0.74
China ¹³	6	188	-	89	-
Saudi Arabia ¹⁴	26	28	_	0	-
USA ¹⁵	10	-	1.2	_	0.29
Czech ¹⁶	34	119	3.72		0.43
Poland ¹⁷	40	392	1.81	99	0.46
Germany ¹⁸	16	474	3.51	_	0.64
Russian Federation	15	385	1.5	158	0.62
MPS, Mucopolysacch	aridosis.		<u> </u>	1	1

states ranging from 0.22 (Idaho) to 3.14 (New Hampshire) per 100 000 live births. Pilot studies have reported higher incidence rates for MPS I based on neonatal screening data, ranging from 1.04 to 8.3 times. 15 However, it should be noted that during neonatal screening, diagnoses are made in the pre-symptomatic phase, and errors may occur due to pseudo-deficient conditions or during enzymatic testing as part of routine screening for children. In contrast, the registry analysis is limited to patients with a combination of clinical symptoms, biochemical data, and/or genetic confirmation.

Based on the data from national MPS registries, comparable results during the last 15–20 years of screening with similar disease prevalence were observed. More detailed comparative characteristics between counties are presented in Table 3.

Limitations

Our study has some limitations. The retrospective type of registry, missing data, personal opinion of the physician, absence of the exact data about the *IDS* gene analysis, and accuracy of the included in the registry data might influence the study results. Different times to diagnosis and treatment might influence the study's outcomes.

CONCLUSION

The prevalence of MPS II in the RF is higher than in some European countries, and closer to the Asian population. The register is a convenient and accessible tool for assessing the clinical features of the disease and creating algorithms for the early diagnosis of MPS. Analysis of register data makes it possible to assess the effectiveness of various methods of therapy and rehabilitation, continuous monitoring of all patients with this diagnosis, and accumulate and improve healthcare in the RF for MPS II patients.

Take home message: A nationwide registry for rare diseases is a useful tool for the assessment of the disease and the outcomes.

Availability of Data and Materials: The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Ethics Committee Approval: The study was approved by the Ethics Committee of Saint-Petersburg State Pediatric Medical University (approval number: #1; date:19.01.2009).

Informed Consent: Written informed consent was obtained from the patients who agreed to take part in the study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – N.B., E.Z., M.K., S.K.; Design – X.X., X.X.; Supervision – E.Z., M.K., S.K.; Resources – E.Z., Y.K., R.S.; Materials – N.B., A.V., Y.K., R.S.; Data Collection and/or Processing – A.N., V.K., Y.M., K.A., E.B., N.K., E.O.; Analysis and/or Interpretation – Y.K., R.S.; Literature Search – N.B., A.V.; Writing – N.B., A.V., Y.K., M.K.; Critical Review – E.Z., S.K.

Declaration of Interests: The authors have no conflicts of interest to declare.

Funding: This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2022-301).

REFERENCES

- Michaud M, Belmatoug N, Catros F, et al. Mucopolysaccharidoses: quand y penser? [Mucopolysaccharidosis: a review]. Rev Med Interne. 2020;41(3):180–188. [CrossRef]
- Muenzer J. Overview of the mucopolysaccharidoses. Rheumatol (Oxf Engl). 2011;50(suppl 5):v4-v12. [CrossRef]
- Muenzer J, Botha J, Harmatz P, Giugliani R, Kampmann C, Burton BK. Evaluation of the long-term treatment effects of intravenous idursulfase in patients with mucopolysaccharidosis II (MPS II) using statistical modeling: data from the Hunter Outcome Survey (HOS). Orphanet J Rare Dis. 2021;16(1):456. [CrossRef]
- ClinicalTrials.gov (study ID: NCT03292887 HOS: Hunter Outcome Survey). Date of preparation: 2020 Item Code VV-MEDMAT; 23110.

 [CrossRef]
- Khan SA, Peracha H, Ballhausen D, et al. Epidemiology of mucopolysaccharidoses. Mol Genet Metab. 2017;121(3):227-240. [CrossRef]
- 6. Federal State Statistics Service. https://rosstat.gov.ru/.
- 7. Available at: www.hgmd.cf.ac.uk.
- Semyachkina AN, Voskoboeva EY, Nikolaeva EA, Zakharova EY. Analysis of long-term observations of the large group of Russian patients with Hunter syndrome (mucopolysaccharidosis type II). BMC Med Genomics. 2021;14(1):71. [CrossRef]

- Semyachkina AN, Voskoboeva EY, Zakharova EY, et al. Case report: a rare case of Hunter syndrome (type II mucopolysaccharidosis) in a girl. BMC Med Genet. 2019;20(1):66. [CrossRef]
- Kloska A, Jakóbkiewicz-Banecka J, Tylki-Szymańska A, Czartoryska B, Węgrzyn G. Female Hunter syndrome caused by a single mutation and familial XCI skewing: implications for other X-linked disorders. Clin Genet. 2011;80(5):459-465. [CrossRef]
- Jones SA, Almássy Z, Beck M, et al. Mortality and cause of death in mucopolysaccharidosis type II-a historical review based on data from the Hunter Outcome Survey (HOS). J Inherit Metab Dis. 2009;32(4):534–543. [CrossRef]
- Cho SY, Sohn YB, Jin DK. An overview of Korean patients with mucopolysaccharidosis and collaboration through the Asia Pacific MPS Network. Intractable Rare Dis Res. 2014;3(3):79-86. [CrossRef]
- Chen X, Qiu W, Ye J, Han L, Gu X, Zhang H. Demographic characteristics and distribution of lysosomal storage disorder subtypes in Eastern China. J Hum Genet. 2016;61(4):345–349. [CrossRef]
- Moammar H, Cheriyan G, Mathew R, Al-Sannaa N. Incidence and patterns of inborn errors of metabolism in the Eastern Province of Saudi Arabia, 1983–2008. Ann Saudi Med. 2010;30(4):271–277. [CrossRef]

- Puckett Y, Mallorga-Hernández A, Montaño AM. Epidemiology of mucopolysaccharidoses (MPS) in United States: challenges and opportunities. Orphanet J Rare Dis. 2021;16(1):241. [CrossRef]
- Poupetová H, Ledvinová J, Berná L, Dvoráková L, Kozich V, Elleder M. The birth prevalence of lysosomal storage disorders in the Czech Republic: comparison with data in different populations. *I Inherit Metab Dis.* 2010;33(4):387–396. [CrossRef]
- Jurecka A, Ługowska A, Golda A, Czartoryska B, Tylki-Szymańska A. Prevalence rates of mucopolysaccharidoses in Poland. J Appl Genet. 2015;56(2):205–210. [CrossRef]
- Baehner F, Schmiedeskamp C, Krummenauer F, et al. Cumulative incidence rates of the mucopolysaccharidoses in Germany. J Inherit Metab Dis. 2005;28(6):1011–1017. [CrossRef]
- Yıldız Y, Sivri HS. Difficulties associated with enzyme replacement therapy for mucopolysaccharidoses. *Turk Arch Pediatr*. 2021;56(6):602-609. [CrossRef]
- Burton BK, Hickey R, Hitchins L. Newborn screening for mucopolysaccharidosis Type II in Illinois: an update. *Int J Neonatal Screen*. 2020;6(3):73. [CrossRef]

	SNP/ rearrangements	Nucleotide; protein change found	rsID	Exons of IDS gene/9	Type of nucleotide change	Significance	Previously reported	
	c.1403G>A	p.Arg468Gln	rs113993946	o	missense	Pathogenic	yes	Hsiang-Yu Lin et al., 2019
	c.907T>C	p.Ser303Pro	1	7	missense	Likely pathogenic	no	
	c.598C>T	p.Gln200Ter	1	5	nonsense	Pathogenic	yes	Semyachkina AN et al. 2021
	c.257C>T	p.Pro86Leu	rs1557340280	3	missense	Pathogenic	yes	Alves S et al., 2006
	c.1466G>A	p.Gly489Asp	1	6	missense	Likely pathogenic	yes	Lin HY et al, 2019
	c.1122C>T	p.Gly374 =	rs113993948	8	splicing substitutions	Pathogenic	yes	Zhang W et al, 2019
	c.1472C>T	p.Ser491Phe		6	missense	Likely pathogenic	yes	Vallance HD et al., 1999
	c.458G>A	p.Trp153Ter		4	nonsense	Pathogenic	yes	Vafiadaki et al., 1999
	c.1122C>T	p.Gly374 =	rs113993948	80	splicing substitutions	Pathogenic	yes	Zhang W et al, 2019
	c.1123G>T	p.Glu375Ter		8	nonsense	Pathogenic	yes	Zhang W et al, 2019
	c.257C>T	p.Pro86Leu	rs1557340280	က	missense	Pathogenic	yes	Alves S et al., 2006
	c.1403G>A	p.Arg468GIn	rs113993946	6	missense	Pathogenic	yes	Hsiang-Yu Lin et al., 2019
	c.263G>C	p.Arg88Pro	1	3	missense	Pathogenic	yes	Villani GR et al, 2000
	c.1122C>T	p.Gly374 =	rs113993948	8	splicing substitutions	Pathogenic	yes	Zhang W et al, 2019
J	c.776_777dup	p.Pro260fs	1		frameshift mutations	Pathogenic	yes	Semyachkina AN et al. 2021
	c.236C>A	p.Ala79Glu	1	2	missense	Likely pathogenic	yes	Saito S et al., 2016
	c.359C>G	p.Pro120Arg	rs193302911	3	missense	Likely pathogenic	yes	Kosuga M et al. 2016
	c.514C>T	p.Arg172Ter	rs104894860	5	nonsense	Pathogenic	yes	Chistiakov DA et al. 2014
	c.305T>G	p.Leu102Arg	ı	8	missense	Likely pathogenic	yes	Saito S et al., 2016
	c.1411G>C	p.Asp471His	ı	6	missense	Likely pathogenic	yes	Semyachkina AN et al. 2021
	c.1418C>T	p.Pro473Leu	1	6	missense	Likely pathogenic	yes	Semyachkina AN et al. 2021
	c.1433delA	p.Asp478fs	1	6	frameshift mutations	Likely pathogenic	no	
	c.545T>C	p.Leu182Pro	ı	5	missense	Likely pathogenic	yes	Saito S et al., 2016
	c.263G>C	p.Arg88Pro	1	3	missense	Pathogenic	yes	Chkioua L et al. 2011
	c.136G>A	p.Asp46Asn	1	2	missense	Likely pathogenic	yes	Semyachkina AN et al. 2021
	c.326G>C	p.Trp109Ser	1	8	missense	Likely pathogenic	no	
	c.880-2del	1	ı	intron 6	splicing substitutions	Pathogenic	yes	Semyachkina AN et al. 2021
	c.1466delG	p.Gly489fs	ı	6	frameshift mutations	Pathogenic	yes	Semyachkina AN et al. 2021
	c.263G>C	p.Arg88Pro	1	8	missense	Pathogenic	yes	Villani GR et al, 2000
	c.263G>C	p.Arg88Pro	ı	က	missense	Pathogenic	yes	Villani GR et al, 2000
	c.1402C>T	p.Arg468Trp	rs199422231	6	missense	Pathogenic	yes	Lin CY et al., 2020
Ü	c.121_123delCTC	p.Leu41del	1	2	small deltion	Likely pathogenic	yes	Semyachkina AN et al. 2021
	c.697A>G	p.Arg233Gly	1	5	missense	VUS	yes	Chistiakov DA et al. 2014
	c.697A>G	p.Arg233Gly	ı	2	missense	VUS	yes	Chistiakov DA et al. 2014
	c.795C>A	p.Asn265Lys	ı	9	missense	Likely pathogenic	yes	Semyachkina AN et al. 2021
	c.514C>T	p.Arg172Ter	rs104894860	5	nonsense	Pathogenic	yes	Chistiakov DA et al. 2014
	c.1505G>A	p.Trp502Ter	1	6	nonsense	Pathogenic	yes	Zhang H et al., 2011
	1-1-000	70.70		•				

p.17.03.371s		SNP/	Nucleotide; protein	Clar	Exons of IDS	Type of nucleotide	Signification	Previously	
c.1018Go-AA p.6ly340Asp 6 missense Liteky pathogenic yes c.1018Go-AA p.6ly340Asp 9 framewell filteky pathogenic yes c.1018Co-AT p.6ly3Ads 9 framewell filteky pathogenic yes c.1018_Co-AT p.6ly3Ad = rs11939346 6 splicing substitutions Plathogenic yes c.1307_Co-AT p.AddsThr rs11933349 3 missense Pathogenic yes c.1307_Co-AT p.AddsThr rs11933349 3 missense Pathogenic yes c.1307_Co-AT p.AddsThr rs11933349 3 missense Pathogenic yes c.1307_Co-AT p.AddsThr rs11933349 3 missense Dethogenic yes c.1307_Co-AT p.AddsThr rs11933349 3 missense Dethogenic yes c.1305_Co-AT p.AddsThr rs11933349 3 missense Dethogenic yes c.1305_Co-AT p.AddsThr rs11933349 3	38	c.1008delG	p.Trp337fs		8	frameshift mutations	Likely pathogenic	ou	
C.109C>A p.Ch/940kap - 0 missense Likely pathogenic yes C.112C>T p.Ch/942ds - 9 frommeshift mutations Puthogenic yes C.112C>T p.Ch/942ds - 9 missense Puthogenic yes C.112C>T p.Acg468Th rs189422221 3 missense Pethogenic yes C.132C>T p.Acg443Te rs189422227 9 missense Pethogenic yes C.132C>T p.Acg461Te rs189422227 9 missense Pethogenic yes C.132C>T p.Acg441er rs1894349 3 missense Pethogenic yes C.132C>T p.Acg441er rs1893349 3 missense Pethogenic yes C.132C>T p.Acg461Te rs1833349 3 missense Pethogenic yes C.102S>C p.Acg561Te rs1833349 3 missense Pethogenic yes C.102S>C p.Acg67Te rs18333349 <td< td=""><td>39</td><td>c.1019G>A</td><td>p.Gly340Asp</td><td>1</td><td>80</td><td>missense</td><td>Likely pathogenic</td><td>yes</td><td>Semyachkina AN et al. 2021</td></td<>	39	c.1019G>A	p.Gly340Asp	1	80	missense	Likely pathogenic	yes	Semyachkina AN et al. 2021
C.124_1220del p. Ser405fs - 9 fromaehlif mutations Pethogenic no C.127-C1 p. Johy24 a - 9 fromaehlif mutations Pethogenic yes C.1207-C1 p. Johy24 a - 3 missense Pethogenic yes C.2307-C1 p. Ade6FTh rs193942231 3 missense Pethogenic yes C.2307-C1 p. Ade6FTh rs193942231 3 missense Pethogenic yes C.4307-C1 p. Ade6FTh rs19392348 3 fromsehlif mutations Likely pethogenic yes C.4307-C2 p. Ade6FTh rs11393344 3 fromsehlif mutations Likely pethogenic yes C.4307-C2 p. Ade6FTh rs11393344 3 missense Pethogenic yes C.2307-C3 p. Ade6FTh rs11393344 3 missense Pethogenic yes C.2305-C4 p. Ade6FTh rs11393344 3 missense Pethogenic yes C.2305-C4	40	c.1019G>A	p.Gly340Asp	1	8	missense	Likely pathogenic	yes	Semyachkina AN et al. 2021
C.112C>T p. Chy374 = p. 1993344 6 splicing substitutions of the period properties of the	41	c.1214_1220del	p.Ser405fs	1	6	frameshift mutations	Pathogenic	no	
C.3051-SG p. Leut02Avg - 3 missense Likely pathogenic yes C.235CA-M p. Alde4687p rs139932233 3 missense Pathogenic yes C.235CA-M p. Alde4687p rs139932237 9 nonsense Pathogenic yes C.235CA-M p. Alde55Th rs13993349 3 frameshiff mutations likely pathogenic yes C.133CA-M p. Alde55Th rs13993349 3 frameshiff mutations Pathogenic yes C.235CA-A p. Alde55Th rs13993349 3 missense Pathogenic yes C.235CA-A p. Alde55Th rs13993349 3 missense Pathogenic yes C.235CA-A p. Alde5Th rs13993349 3 missense Pathogenic yes C.235CA-A p. Alde5Th rs1399349 3 missense Pathogenic yes C.235CA-A p. Alde5Th rs1399349 3 missense Ikely pathogenic yes C.235CA-A	42	c.1122C>T	p.Gly374 =	rs113993948	8	splicing substitutions	Pathogenic	yes	Zhang W et al, 2019
C.1402C>T p. Arg4defirp rst9942233 9 missense Pathogenic yes c.133C>A p. Ardad45Thr rs199422237 9 missense Pathogenic yes c.133C>A p. Ardad5Thr rs199422237 9 missense Pathogenic yes c.143C_AT p. Arg4d3Ter rs104994651 3 fromeshiff mutations Likely pathogenic yes c.143C_AT p. Ardad5Thr rs113993946 8 splicing substitutions Pathogenic yes c.135C>A p. Ardad5Thr rs113993949 3 missense Pathogenic yes c.135C>A p. Ardad5Thr rs113993949 3 missense Likely pathogenic yes c.135C>A p. Ardad5Thr rs113993949 3 missense Likely pathogenic yes c.135C>A p. Ardad5Thr rs13993249 3 missense Likely pathogenic yes c.136C>C p. Ardad5Thr rs13993249 3 missense Likely pathogenic yes	43	c.305T>G	p.Leu102Arg	1	3	missense	Likely pathogenic	yes	Saito S et al., 2016
C.255C-A p.AldeSThr rs113993849 3 missense Pethogenic yes C.404A-CG p.Jy813EAYG rs10489461 3 missense Pikely pathogenic yes C.404A-CG p.Jy813EAYG rs10489461 3 frameshift mutations Likely pathogenic yes C.410_41idel p.Phe1374 rs11399394 6 splicing substitutions Likely pathogenic yes C.4138_L44del p.AldeSThr rs113993949 3 missense Pethogenic yes C.253C-A p.AldeSThr rs113993949 3 missense Pethogenic yes C.253C-A p.AldeSThr rs113993949 3 missense Pethogenic yes C.102A-C p.AldeSThr rs13992349 3 missense Pethogenic yes C.103C-C p.AlgeSCys rs39912349 3 missense Likely pathogenic yes C.103C-C p.AlgeSCys rs39912349 3 missense Likely pathogenic yes	44	c.1402C>T	p.Arg468Trp	rs199422231	6	missense	Pathogenic	yes	Lin CY et al., 2020
C.137C-JT p.Arg443Ter ris199422227 9 nonsense Porthogenic yes c.2040A-Se p.Lys135A-g ris1049-d6f 3 fromeshiff mutotions Likely pethogenic yes c.410_41fdel p.Pho4807s ris1049-3244 3 fromeshiff mutotions Likely pethogenic yes c.1432_A42del p.Alo35Te ris1393949 3 fromeshiff mutotions Pethogenic yes c.132C-JT p.Alo35Te ris1393949 3 missense Pathogenic yes c.253C-A p.His34Pro ris69025303 6 missense Likely pathogenic yes c.103C-AC p.Ap35His - 1 fromeshiff mutotions Likely pathogenic yes c.103C-AC p.Ap35His - 1 fromeshiff mutotions Likely pathogenic yes c.103C-AC p.Ap35His - 1 fromeshiff mutotions Likely pathogenic yes c.103C-AC p.Ap35His - 1 fromeshiff mutotions Likely pathogenic	45	c.253G>A	p.Ala85Thr	rs113993949	3	missense	Pathogenic	yes	K., et
c.4044>G p.lys135A-g rs1048946f 3 missense Likely pathogenic yes c.1132C+T p.Phe1374 - 3 frameshiff mutations Likely pathogenic yes c.1132C+T p.Alot4061 p.Alot4061 - 9 frameshiff mutations Jikely pathogenic yes c.1353C+A p.Alot65Thr rs113933449 3 missense Pathogenic yes c.235.C+A p.Alot65Thr rs113933449 3 missense Pathogenic yes c.1025A-C p.His4A2Pro rs18993349 3 missense Itelhogenic yes c.1036A-C p.His4A2Pro rs18993449 3 missense Itelhogenic yes c.1036A-C p.Asp35His - 1 frameshiff mutations Likely pathogenic yes c.1036A-C p.Asp35His - 1 missense Likely pathogenic yes c.1036A-C p.Asp35His - 1 missense Likely pathogenic yes	46	c.1327C>T	p.Arg443Ter	rs199422227	6	nonsense	Pathogenic	yes	Piña-Aguilar RE et al., 2012
C.410_41Idel p.Phea137fs - 3 frameshiff mutations Likely pathogenic yes C.132C>T p.Pho4637fs - r.1382.4324e 6 p.Pho4630ric yes C.132C>T p.Ald65Thr rs1139334g 3 missense Pethogenic yes C.253C>A p.Ald65Thr rs1139334g 3 missense Pethogenic yes C.1026>C p.Ald65Thr rs18139334g 3 missense Pethogenic yes C.1026>C p.Ald65Thr rs1819334g 3 missense Pethogenic yes C.1026>C p.Ald65Thr rs1819334g 3 missense Pethogenic yes C.1036>C p.Ag35His - 1 missense Pethogenic yes C.1036>C p.Ag35His - 1 missense Pethogenic yes C.1036>C p.Ag36Lys - 1 missense Likely pathogenic yes C.1036>C p.Ag4314r rs1857324g	47	c.404A>G	p.Lys135Arg	rs104894861	33	missense	Likely pathogenic	yes	Bunge S et al., 1992
C:1438_1442del p.Pro480fs - 9 frameshiff mutations Pathogenic yes C:132C>T p.G/937a rs11393346 8 splicing substitutions Pathogenic yes c.253C>A p.Ado6Thr rs11393349 3 missense Pathogenic yes c.253C>A p.Ado6Thr rs11393349 3 missense Dethogenic yes c.103C>C p.Asp35His - 1 frameshiff mutations Likely pathogenic yes c.103C>C p.Asp35His - 1 missense UVS yes c.103C>C p.Asp35His - 1 missense Pathogenic yes c.103C>C p.Asp35His - 1 missense Pathogenic yes c.103C>C p.Asp35His - 1 missense Likely pathogenic yes c.103C>C p.Arg66 p.Pro187Leu - 5 missense Likely pathogenic yes c.250C>T p.Arg43Ter rs	48	c.410_411del	p.Phe137fs	ı	က	frameshift mutations	Likely pathogenic	yes	Ebrahimi-Fakhari D et al., 2018
C.112C>T D.Gly374 = rs11399346 8 picing substitutions patients Pathogenic presented yes C.253G>A p.Ad685Thr rs113993349 3 missense Pathogenic presented yes C.253G>A p.Ad685Thr rs113993349 3 missense Itkely pathogenic presented yes C.103G>C p.Asp38His - 1 missense Itkely pathogenic presented yes C.103G>C p.Ag98Cys rs39e123249 3 missense Itkely pathogenic presented yes C.103G>C p.Ag98Cys rs39e123249 3 missense Itkely pathogenic presented yes C.103G>C p.Ag98Cys rs39e123249 3 missense Itkely pathogenic presented yes C.13GC>T p.Pro197Leu - 5 missense Itkely pathogenic presented yes C.30C>T p.Pro197Leu - 5 missense Pathogenic presented yes C.53C>T p.Pro197Leu - 5 missense Pathogenic presented yes C.13GC>T <td>49</td> <td>c.1438_1442del</td> <td>p.Pro480fs</td> <td>1</td> <td>6</td> <td>frameshift mutations</td> <td>Pathogenic</td> <td>yes</td> <td>Semyachkina AN et al. 2021</td>	49	c.1438_1442del	p.Pro480fs	1	6	frameshift mutations	Pathogenic	yes	Semyachkina AN et al. 2021
C.253C>A p.Alde5Thr rail3993949 3 missense Pathogenic yes C.253C>A p.Alde5Thr rsi1399349 3 missense Pathogenic yes C.253C>A p.Alde5Thr rsi1399349 3 missense Likely pathogenic yes C.39_55dup p.Asp35His - 1 missense VUS yes C.103C>C p.Asp35His - 1 missense VUS yes C.103C>C p.Asp35His - 1 missense Likely pathogenic yes C.103C>C p.Asp35His - 1 missense Pathogenic yes C.103C>C p.Asp35His - 1 missense Pathogenic yes C.103C>C p.Apo197Leu - 5 missense Pathogenic yes C.30T>C p.Po197Leu - 5 missense Pathogenic yes C.50C>T p.Po197Leu - 5 missense Pathogenic	20	c.1122C>T	p.Gly374 =	rs113993948	8	splicing substitutions	Pathogenic	yes	Zhang W et al, 2019
C.283G>A p.Alad\$Thr rs13993949 3 missense Pathogenic yes c.1026A>C p.Hisa34Pro rs869025303 8 missense Likely pathogenic yes c.103G>C p.Asp35His - 1 missense VUS yes c.103G>C p.Asp35His - 1 missense VUS yes c.103G>C p.Cy443Tyr - 1 missense Likely pathogenic yes c.103G>C p.Cy443Tyr - 1 missense Likely pathogenic yes c.103G>C p.Cy432Tyr - 1 missense Likely pathogenic yes c.103G>C p.Tyn03Asp - 5 missense Pathogenic yes c.590C>T p.Pr019Teu - 5 missense Pathogenic yes c.590C>T p.Pr019Teu - 5 missense Pathogenic yes c.130C>T p.Pr019Teu - 1 missense Pathogenic	21	c.253G>A	p.Ala85Thr	rs113993949	8	missense	Pathogenic	yes	Sukegawa-Hayasaka K., et al. 2006
C.1026A-C p.His434Pro rs869025303 8 missense Likely pathogenic yes Alcántora-Ortigoza MA et al., 2018 c.39_55dup p.Ser195s - 1 missense I/kely pathogenic yes Semyackkina AM et al. 2021 c.1036-C p.Asp35His - 1 missense I/kely pathogenic yes Semyackkina AM et al. 2021 c.1036-C p.Asp35His - 1 missense I/kely pathogenic yes Semyackkina AM et al. 2021 c.267C-T p.Cy443Tyr - 3 missense I/kely pathogenic yes Semyackkina AM et al. 2021 c.267C-T p.Pro197Leu - 5 missense Pathogenic yes Semyackkina AM et al. 2021 c.269C-T p.Pro197Leu - 5 missense Pathogenic yes Semyackkina AM et al. 2021 c.269C-T p.Pro197Leu - 5 missense Pathogenic yes Semyackkina AM et al. 2021 c.269C-T p.Pro197Leu - 5 missense Patho	52	c.253G>A	p.Ala85Thr	rs113993949	က	missense	Pathogenic	yes	Sukegawa-Hayasaka K., et al. 2006
c.39_E5dup p.Ser19fs - 1 frameshiff mutations Likely pathogenic no c.1036AC p.Asp35His - 1 missense VUS yes Semyachkina AN et al., 2016 c.1036AC p.Asp35His - 1 missense UVB yes Semyachkina AN et al., 2016 c.1036AC p.Arg86Cys r.398123249 3 missense Likely pathogenic yes Semyackhina AN et al., 2018 c.280C>T p.Pro197Leu - 5 missense Pathogenic yes Semyackhina AN et al., 2019 c.280C>T p.Pro197Leu - 5 missense Pathogenic yes Semyackhina AN et al., 2017 c.280C>T p.Pro197Leu - 5 missense Pathogenic yes Semyackhina AN et al., 2017 c.280C>T p.Pro197Leu - 5 missense Pathogenic yes Semyackhina AN et al., 2017 c.280C>T p.Pro197Leu - 5 missense Likely pathogenic yes Semyackhina AN et a	23	c.1025A>C	p.His342Pro	rs869025303	80	missense	Likely pathogenic	yes	Alcántara-Ortigoza MA et al., 2018
c.103G>C p Asp35His - 1 missense VUS yes Semyachkina AN et c.103G>C p Asp35His - 1 missense IVBS yes Semyachkina AN et c.129G>A p.Cys43Tyr - 9 missense IVBS yes Sativachkina AN et c.28GC>T p.Arg86Cys - 3 missense III HY et ol. 2019 III HY et ol. 2019 c.280C>T p.Pro197Leu - 5 missense Pothogenic yes Semyachkina AN et c.290C>T p.Pro197Leu - 5 missense Pothogenic yes Semyachkina AN et c.290C>T p.Pro197Leu - 5 missense Pothogenic yes Semyachkina AN et c.290C>T p.Pro197Leu - 5 missense Pothogenic yes Semyachkina AN et c.290C>T p.Pro197Leu - 3 frameshift mutations Pothogenic yes Semyachkina AN et c.196C>T p.Arg443Ter	24	c.39_55dup	p.Ser19fs	1	1	frameshift mutations	Likely pathogenic	ou	
c.103G>C p.Agp35His - 1 missense ILkely pathogenic yes Semyachkina AN et c.1295G>A p.Cya433Tyr - 9 missense Itkely pathogenic yes Sinfo S et al., 2016 c.262C>T p.Pro187Leu - 5 missense Pathogenic yes Semyachkina AN et c.590C>T p.Pro187Leu - 5 missense Pathogenic yes Semyachkina AN et c.590C>T p.Pro187Leu - 5 missense Pathogenic yes Semyachkina AN et c.590C>T p.Pro187Leu - 5 missense Pathogenic yes Semyachkina AN et c.590C>T p.Pro187Leu - 3 frameshiff mutations Pathogenic yes Semyachkina AN et c.590C>T p.Pro187Leu - 3 monsense Pathogenic yes Semyachkina AN et c.180C>T p.Pro187Leu - 1 p. monsense Inthogenic yes Prina Anatiou-Reit	22	c.103G>C	p.Asp35His	1	1	missense	NUS	yes	Semyachkina AN et al. 2021
c.195G>A p.Cys43Tyr - 9 missense Likely pathogenic yes Sairto S et al., 2019 c.262C>T p.Arg88Cys rs398123249 3 missense Itely pathogenic yes Lin HY et al., 2019 c.307T>G p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et al., 2019 c.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et al., 2019 c.290C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et al., 2019 c.290C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et al., 2018 c.290C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et al., 2018 c.290C>T p.Pro197Leu r.5157340403 2 nonsense Pathogenic yes Semyachkina AN et al., 2017 c.186C>T p.Arg443Ter r.5193422227 9 nonsense Likely porthogenic	26	c.103G>C	p.Asp35His	1	-	missense	NUS	yes	Semyachkina AN et al. 2021
C.262C>T p.Arg88Cys rs398123249 3 missense Pathogenic yes Lin HY et al, 2019 C.30T>G p.Tyr103Asp - 3 missense Likely pathogenic yes Semyachkina AN et C.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et C.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et C.248delT p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et C.248delT p.Pro197Leu - 3 frameshift mutations Pathogenic yes Semyachkina AN et C.248delT p.Val83fs - 3 frameshift mutations Pathogenic yes Semyachkina AN et C.218delT p.Arg443fer rs199422227 9 nonsense Likely pathogenic yes Pina H et al., 2017 C.214-9C>G - - intron 2 splicing substitutions VUS yes Semyachkina	22	c.1295G>A	p.Cys432Tyr	1	თ	missense	Likely pathogenic	yes	Saito S et al., 2016
c.590C>T P.Pro197Leu - 3 missense Likely pathogenic yes Semyachkina AN et c.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et c.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et c.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et c.24deloT p.Pro197Leu - 3 frameshiff mutations Pathogenic yes Semyachkina AN et c.18delT p.Clin66Ter rs1557340403 2 nonsense Pathogenic yes Semyachkina AN et c.18delC p.Clin66Ter rs159422227 9 nonsense Pathogenic yes Pind Het al., 2017 c.18delC p.Arg443Ter rs15942227 9 nonsense Likely pathogenic yes Semyachkina AN et c.241-9C - intron 8 splicing substitutions VUS yes Anves S et al., 2006	28	c.262C>T	p.Arg88Cys	rs398123249	က	missense	Pathogenic	yes	Lin HY et al, 2019
c.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et c.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et c.290C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et c.248deIT p.Val83fs - 3 frameshiff mutations Pathogenic yes Semyachkina AN et c.136C>T p.Gln66Ter rs1557340403 2 nonsense Pathogenic yes Semyachkina AN et c.136C>T p.Gln66Ter rs1557340403 2 nonsense Pathogenic yes Semyachkina AN et c.136C>T p.Gl08T>A p.Tyr33Ter - intron 2 splicing substitutions VUS yes Semyachkina AN et c.241-9C>G - - intron 8 splicing substitutions VUS yes Amartino H et al., 2017 c.181-1G>A - - intron 8 splicing substitutions VUS yes	29	c.307T>G	p.Tyr103Asp	ı	က	missense	Likely pathogenic	yes	Semyachkina AN et al. 2021
C.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et C.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et C.248delT p.Val83fs - 3 frameshiff mutations Pathogenic yes Semyachkina AN et C.186C>T p.Gln66Ter rs1557340403 2 nonsense Pathogenic yes Semyachkina AN et C.186C>T p.Gln66Ter rs19542227 9 nonsense Pathogenic yes Nug LH et al., 2017 C.186C>T p.Arg443Ter rs19542227 9 nonsense Irikely pathogenic yes Nug LH et al., 2017 C.180A1-A p.Arg468Gln rs1864622777 intron 2 splicing substitutions VUS yes Anartino H et al., 2018 C.241-9C>C - - intron 8 splicing substitutions VUS yes Alves S et al., 2006 C.181-IG>A - - - intron 8 splicing substitutions VUS </td <td>09</td> <td>c.590C>T</td> <td>p.Pro197Leu</td> <td>1</td> <td>ນ</td> <td>missense</td> <td>Pathogenic</td> <td>yes</td> <td>Semyachkina AN et al. 2021</td>	09	c.590C>T	p.Pro197Leu	1	ນ	missense	Pathogenic	yes	Semyachkina AN et al. 2021
c.590C>T p.Pro197Leu - 5 missense Pathogenic yes Semyachkina AN et al., 2011 c.248deIT p.Val83fs - 3 frameshift mutations Pathogenic yes Semyachkina AN et al., 2011 c.186C>T p.Cln66fer rs1557340403 2 nonsense Pathogenic yes Phia-Aguilar RE et al., 2011 c.186C>T p.Cln66fer rs1557340403 2 nonsense Pathogenic yes Phia-Aguilar RE et al., 2011 c.180C>T p.Cln66fer - intron 2 splicing substitutions VUS yes Semyachkina AN et al., 2017 c.241-9C>G - intron 2 splicing substitutions VUS yes Alves S et al., 2006 c.241-9C>A - intron 8 splicing substitutions yes Alves S et al., 2006 c.241-9C>A - - intron 8 splicing substitutions yes Hsieng-Yu Lin et al., 2006 c.185C>A - - - - - - - c.181C>A	61	c.590C>T	p.Pro197Leu	1	വ	missense	Pathogenic	yes	Semyachkina AN et al. 2021
c.248deIT p.Val83fs - 3 frameshift mutations Pathogenic yes Semyachkina AN et c.196C>T p.Cln66Ter rs1557340403 2 nonsense Pathogenic yes Zhang H et al., 2011 c.1327C>T p.Arg443Ter rs199422227 9 nonsense Pathogenic yes Piña-Aguilar RE et c. c.1608T>A p.Tyr536Ter - 9 nonsense Likely pathogenic yes Piña-Aguilar RE et c. c.21-9C>G - - intron 2 splicing substitutions VUS yes Semyachkina AN et c.241-9C>G - - intron 2 splicing substitutions VUS yes Alves S et al., 2006 c.241-9C>G - - intron 8 splicing substitutions VUS yes Alves S et al., 2006 c.257C>T p.Arg468Gln rs113993946 9 missense Likely pathogenic yes Alves S et al., 2006 c.181-15C>A - - - intron 8 splicing substitutions V	62	c.590C>T	p.Pro197Leu	1	5	missense	Pathogenic	yes	Semyachkina AN et al. 2021
C.196C>T p.GIn66Ter rs155340403 2 nonsense Pathogenic yes Zhang Het al., 2011 C.1327C>T p.Arg443Ter rs199422227 9 nonsense Likely pathogenic yes Piña-Aguillar RE et c. C.1608T>A p.Dr4g43Ter - 9 nonsense Likely pathogenic yes Piña-Aguillar RE et c. C.241-9C>G - - - intron 2 splicing substitutions VUS yes Semyachkina AN et al., 2017 C.241-9C>G - - intron 2 splicing substitutions VUS yes Amartino H et al., 2017 C.241-9C>G - rs1864622777 intron 8 splicing substitutions Pathogenic yes Alves S et al., 2006 C.257C>T p.Pro86Leu rs11399346 9 missense Likely pathogenic yes Alves S et al., 2006 C.181-15C>A - - - - intron 8 splicing substitutions VUS yes Alves S et al., 2006 C.257C>T p.Pro86Leu rs1048	63	c.248deIT	p.Val83fs	ı	3	frameshift mutations	Pathogenic	yes	Semyachkina AN et al. 2021
c.1327C>T p.Arg443Ter rs199422227 9 nonsense Pathogenic yes Piña-Aguilar RE et consense c.1608T>A p.Tyr536Ter - 9 nonsense Likely pathogenic yes Ngu LH et al., 2017 c.241-9C>G - - infron 2 splicing substitutions VUS yes Semyachkina AN et al., 2018 c.241-9C>G - - infron 8 splicing substitutions VUS yes Amartino H et al., 2016 c.181-1G>A - rs864622777 infron 8 splicing substitutions Likely pathogenic yes Alves S et al., 2006 c.181-1G>A - - infron 8 splicing substitutions VUS yes Alves S et al., 2006 c.181-1G>A - - infron 8 splicing substitutions VUS yes Alves S et al., 2006 c.181-1G>A - - infron 8 splicing substitutions VUS yes Alves S et al., 2006 c.257C>T p.Pro86Leu rs104894853 7 missense	64	c.196C>T	p.Gln66Ter	rs1557340403	2	nonsense	Pathogenic	yes	Zhang H et al., 2011
c.1608T>A p.Tyr536Ter - 9 nonsense Likely pathogenic yes Ngu LH et al., 2017 c.241-9C>G - intron 2 splicing substitutions VUS yes Semyachkina AN et al., 2006 c.241-9C>G - intron 2 splicing substitutions VUS yes Semyachkina AN et al., 2006 c.181-1G>A - rs864622777 intron 8 splicing substitutions VUS yes Alves S et al., 2006 c.181-1G>A p.Pro86Leu 3 missense Likely pathogenic yes Hsiang-Yu Lin et al., 2006 c.181-1G>A p.Pro86Leu splicing substitutions VUS yes Semyachkine AN et al., 2006 c.181-1G>A p.Pro86Leu splicing substitutions VUS yes Semyachkine AN et al., 2006 c.257C>T p.Ser333Leu rs104894853 7 missense Intropenic yes Lin CY et al., 2006 c.613del p.Jyr300fs - 5 frameshiff mutations Pathogenic yes Semyachkina AN et al., 2006 c.899_900de	65	c.1327C>T	p.Arg443Ter	rs199422227	თ	nonsense	Pathogenic	yes	Piña-Aguilar RE et al., 2012
c.241-9C>G - intron 2 splicing substitutions of c.241-9C>G VUS yes Semyachkina AN et Semman An et	99	c.1608T>A	p.Tyr536Ter	1	6	nonsense	Likely pathogenic	yes	Ngu LH et al., 2017
c.241-9C>G - infron 2 splicing substitutions splicing substitutions VUS yes Amartino H et al., 20 damatino H et al.,	29	c.241-9C>G	1	1	intron 2	splicing substitutions	NUS	yes	Semyachkina AN et al. 2021
c.181-1G>A - rs864622777 intron 8 splicing substitutions Pathogenic yes Amartino H et al., 2006 c.257C>T p.Pro86Leu 3 missense Likely pathogenic yes Hsiang-Yu Lin et al., 2006 c.1403G>A p.Arg468Gln rs113993946 9 missense Pathogenic yes Hsiang-Yu Lin et al., 2006 c.181-15C>A - - intron 8 splicing substitutions VUS yes Alves S et al., 2006 c.257C>T p.Pro86Leu 3 missense Likely pathogenic yes Alves S et al., 2006 c.29RC>T p.Ser333Leu rs104894853 7 missense Pathogenic yes Semyachkina AN et c.613del p.Ala205fs - 5 frameshiff mutations Pathogenic yes Semyachkina AN et c.899_900del p.Ser333Leu rs104894853 7 missense pathogenic yes LinCY et al., 2020 c.988C>T p.Ser333Leu rs104894853 7 missense pathogenic yes	68	c.241-9C>G	1	1	intron 2	splicing substitutions	NUS	yes	Semyachkina AN et al. 2021
c.257C>T p.Pro86Leu 3 missense Likely pathogenic yes Alves S et al., 2006 c.1403G>A p.Arg468GIn rs113993946 9 missense Pathogenic yes Hsiang-Yu Lin et al., 2006 c.181-15C>A - intron 8 splicing substitutions VUS yes Semyachkina AN et al., 2020 c.25TC>T p.Pro86Leu rs104894853 7 missense Pathogenic yes Lin CY et al., 2020 c.613del p.Ala205fs - 5 frameshiff mutations Pathogenic yes Semyachkina AN et Semyachkina AN et Semyachkina AN et Inc. 2020 c.6899_900del p.Ser333Leu rs104894853 7 missense Pathogenic yes Semyachkina AN et Inc. 2020 c.998C>T p.Ser333Leu rs104894853 7 missense pathogenic yes Lin CY et al., 2020	69	c.1181-1G>A	1	rs864622777	intron 8	splicing substitutions	Pathogenic	yes	Amartino H et al., 2014
c.1403G>A p.Arg468GIn rs113993946 9 missense Pathogenic yes Hsiang-Yu Lin et al., and	70	c.257C>T	p.Pro86Leu		က	missense	Likely pathogenic	yes	Alves S et al., 2006
c.1181-15C>A - intron 8 splicing substitutions VUS yes Semyachkina AN et c.257C>T p.Pro86Leu 3 missense Likely pathogenic yes Alves S et al., 2006 c.998C>T p.Ser333Leu rs104894853 7 missense Pathogenic yes Lin CY et al., 2020 c.613del p.Ala205fs - 5 frameshiff mutations Pathogenic yes Semyachkina AN et c.899_900del p.Tyr300fs - 7 frameshiff mutations Pathogenic yes Semyachkina AN et c.998C>T p.Ser333Leu rs104894853 7 missense Pathogenic yes Lin CY et al., 2020	7	c.1403G>A	p.Arg468Gln	rs113993946	თ	missense	Pathogenic	yes	Hsiang-Yu Lin et al., 2019
c.257C>T p.Pro86Leu 3 missense Likely pathogenic yes c.998C>T p.Ser333Leu rs104894853 7 missense Pathogenic yes c.613del p.Ala205fs - 5 frameshiff mutations Pathogenic yes c.899_900del p.Tyr300fs - 7 frameshiff mutations Pathogenic yes c.998C>T p.Ser333Leu rs104894853 7 missense Pathogenic yes	72	c.1181-15C>A	1	1	- 1	splicing substitutions	NUS	yes	Semyachkina AN et al. 2021
c.998C>T p.Ser331Leu rs104894853 7 missense Pathogenic yes c.613del p.Ala205fs - 5 frameshiff mutations Pathogenic yes c.899_900del p.Tyr300fs - 7 frameshiff mutations Pathogenic yes c.998C>T p.Ser333Leu rs104894853 7 missense Pathogenic yes	73	c.257C>T	p.Pro86Leu		က	missense	Likely pathogenic	yes	Alves S et al., 2006
c.613del p.Ala205fs - 5 frameshift mutations Pathogenic yes c.899_900del p.Tyr300fs - 7 frameshift mutations Pathogenic yes c.998C>T p.Ser333Leu rs104894853 7 missense Pathogenic yes	74	c.998C>T	p.Ser333Leu	rs104894853	7	missense	Pathogenic	yes	Lin CY et al., 2020
c.899_900del p.Tyr300fs - 7 frameshift mutations Pathogenic yes c.998C>T p.Ser333Leu rs104894853 7 missense Pathogenic yes	75	c.613del	p.Ala205fs	1	Ŋ	frameshift mutations	Pathogenic	yes	Semyachkina AN et al. 2021
c.998C>T p.Ser333Leu rs104894853 7 missense Pathogenic yes	9/	c.899_900del	p.Tyr300fs	1	7	frameshift mutations	Pathogenic	yes	Semyachkina AN et al. 2021
	77	c.998C>T	p.Ser333Leu	rs104894853	7	missense	Pathogenic	yes	Lin CY et al., 2020

	SNP/	Nucleotide; protein	Q	Exons of IDS	Type of nucleotide	Significance	Previously	
78	c.187A>G	p.Asn63Asp	rs193302909	2	missense	Pathogenic	yes	Zanetti A et al., 2019
79	c.187A>G	p.Asn63Asp	rs193302909	2	missense	Pathogenic	yes	Zanetti A et al., 2019
80	c.1403G>A	p.Arg468Gln	rs113993946	6	missense	Pathogenic	yes	Hsiang-Yu Lin et al., 2019
81	c.1004A>G	p.His335Arg	1	7	missense	Likely pathogenic	yes	Saito S et al., 2016
82	c.1030G>A	p.Glu344Lys	1	8	missense	Likely pathogenic	ou	
83	c.551G>T	p.Cys184Phe	1	5	missense	VUS	yes	Saito S et al., 2016
84	c.425C>T	p.Ser142Phe	1	4	missense	Likely pathogenic	yes	Chistiakov DA et al. 2014
85	c.1037C>T	p.Ala346Val		8	missense	Likely pathogenic	yes	Maddox LO et al., 1998
98	c.425C>A	p.Ser142Tyr	rs193302908	4	missense	Likely pathogenic	yes	Saito S et al., 2016
87	c.596_599del	p.Lys199fs	1	5	frameshift mutations	Pathogenic	yes	Alcántara–Ortigoza MA et al., 2018
88	c.998C>T	p.Ser333Leu	rs104894853	7	missense	Pathogenic	yes	Lin CY et al., 2020
89	c.133G>T	p.Asp45Tyr	1	2	missense	Likely pathogenic	ou	
90	c.395C>G	p.Ser132Trp	1	3	missense	Likely pathogenic	yes	Saito S et al., 2016
91	c.419-2A>G	1	ı	intron 3	splicing substitutions	Pathogenic	ou	
92	c.795C>G	p.Asn265Lys	1	9	missense	Pathogenic	yes	Saito S et al., 2016
93	c.262C>T	p.Arg88Cys	rs398123249	3	missense	Pathogenic	yes	Lin HY et al, 2019
94	c.1077delG	p.lle360fs	1	8	frameshift mutations	Likely pathogenic	yes	Semyachkina AN et al. 2021
92	c.1327C>T	p.Arg443Ter	rs199422227	6	nonsense	Pathogenic	yes	Piña-Aguilar RE et al., 2012
96	c.1273del	p.Pro425fs	ı	6	frameshift mutations	Likely pathogenic	ou	
97	c.1264T>G	p.Cys422Gly	rs199422229	6	missense	Pathogenic	yes	Bunge S et al., 1992
98	c.1006+2T>G	_	1	intron 7	splicing substitutions	Pathogenic	yes	Semyachkina AN et al. 2021
66	IDS/IDSP1 in IDS						yes	Alcántara-Ortigoza MA et al., 2016
	gene							
100	Recombination IDS/ps IDS2 ex3/ int7						yes	Bondeson ML et al., 1995
101	CP973598/						yes	Semyachkina AN et al. 2021
	Recomb. between							
	in. 7 and seq.							
	IDS-2 without							
	exons deletion							
102	Recombination						yes	Bondeson ML et al., 1995
	IDS/ps IDS2 ex3/ int7							
103	inv IDS/IDSP1						yes	Alcántara–Ortigoza MA et al., 2016
104	NM_0000202.5,						no exact	Semyachkina AN et al. 2021
105	Decombination						30%	Rondeson MI of al 1995
2	IDS/ps IDS2 ex3/						S D	DOLIGESOF MIL ET GI., 1990
	in+7							

	SNP/	Nucleotide; protein	; protein		Exons of IDS	Type of nucleotide	Previously	
	rearrangements	change found	found	rsID	6/eue6	change	Significance reported	
106	Recombination IDS/ps IDS2 ex3/ int7						yes	Bondeson ML et al., 1995
107	del exon 3-7 IDS gene						no exact coordinates	Semyachkina AN et al. 2021
108	del exon 7						no exact coordinates	Semyachkina AN et al. 2021
109	gene IDS deletion						no exact coordinates	Froissart, R et al., 1993
110	del exon 1-7 IDS						no exact coordinates	Zanetti A et al., 2014
111	del exon 1-9 IDS						no exact coordinates	Semyachkina AN et al. 2021
112	DEL:chrX:14	18 294 415-14	8 657 098	DEL:chrX:148 294 415-148 657 098 (362.7kb, Del: I	HSFX3, IDS, CXorf40A, LINC00893)	0A, LINC00893)	ou	
113	Recombination IDS/ps IDS2 ex3/ int7						yes	Bondeson ML et al., 1995
411	Recombination IDS/ps IDS2 ex3/ int5						yes	Semyachkina AN et al. 2021
115	del exon 1-7 IDS						no exact coordinates	Zanetti A et al., 2014
116	ex.5del						no exact coordinates	Semyachkina AN et al. 2021